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• A post-quantum digital signature protocol 

• As compact as SQIsign 

• As safe as SQIsign8D (safer than SQIsign4D, SQIsign) 

• The fastest verification of all SQIsign protocols 

• Aim is to update the SQIsign NIST submission to 2D

SQIsign2D



• Within a few days, three variants of SQISign were published 

• Today I’ll be talking about SQIsign2D-West 

• SQIsign2D-East is very similar to West, but with heuristics and faster signing 

• SQIsignPrime is more similar to SQIsign4D with a new challenge 

• Neither East or Prime has an implementation

East vs West vs Prime
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Very compact signatures

SQIsign2D
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Isogenists: very fast algorithms?!

SQIsign2D



NIST I

NIST III
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Sizes (Bytes) Timing (ms)

Public Key Signature Keygen Sign Verify
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Slow algorithms

SQIsign2D



Can SQIsign2D be fast enough when 
size-restrictions force its use?



Overview

• Understanding SQIsign signatures 

• Why is dimension two “just right” 

• How does SQIsign2D compare 

• What next?



Isogenies and Friends



Isogeny World

• Elliptic curves are curves: maps between curves are rational maps 

• Elliptic curves are groups: maps between groups are homomorphisms 

• An isogeny  is a map between curves which additionally 
preserves the group structure

φ : E1 → E2

φ(P + Q) = φ(P) + φ(Q), P, Q ∈ E1

• An isogeny  is an endomorphism, the set of endomorphisms is a 
ring 

θ : E → E
End(E)



Supersingular Isogeny World

• Supersingular curves have particularly large endomorphism rings 

• For the curves we consider: ,  has rank four 

• Isogenies have finite kernels and we’re interested in separable isogenies:
 

• For efficiency, we generally can only compute smooth degree isogenies 

• For a given , we can compute the -isogeny graph which are ( ) regular 
and Ramanujan (it’s easy to get lost in the graph)

E/𝔽p2 End(E)

#ker(φ) = deg(φ)

ℓ ℓ ℓ + 1



HD Isogeny World

• We can generalise the notion of isogenies to higher 
dimensional varieties 

• A trendy isogeny is one between elliptic products:

• We can think of this as one two-dimensional 
isogeny or a matrix of four one-dimensional 
isogenies:

Φ : E1 × E4 → E2 × E3

Φ = (
φ12 ̂φ 34

−φ13 ̂φ 24)

E1 E2

E3 E4

φ12

φ34

φ13 φ24



Quaternion World

• An “extension” of complex numbers, elements look like:  

• For  we have  

• Given a fractional ideal , the left order is  

• Why quaternions? When  has rank four,  (maximal) 

• We’ll discuss this more Deuring the talk… 🥁

α = a + bi + cj + dk

α ∈ ℬp,∞ = ℚ⟨i, j⟩ i2 = − 1, j2 = − p, ij = k = − ji

I 𝒪L(I) = {α ∈ ℬp,∞ |αI ⊂ I}

End(E) End(E) ≅ 𝒪



Hard Problems

• Given two supersingular elliptic curves, find an isogeny connecting them 

• Given a supersingular elliptic curve, compute its endomorphism ring 

• In (2021/919) Wesolowski showed these problems are equivalent  

• There are other “hard” isogeny problems, some of which are now understood 
to be easy 

• Given an isogeny-based cryptographic primitive, convince people that it’s 
practical

Or at least not easy yet…



I know something you don’t 
know and I can prove it to you.

Digital Signatures



I know the… 

Endomorphism ring of this 
supersingular curve

SQIsign



E0

Public set-up  

- A prime  

- A supersingular elliptic curve  with 
known endomorphism ring  

-

p

E0/𝔽p2

𝒪0 ≅ End(E0)

E0 : y2 = x3 + x (p ≡ 3 mod 4)



E0

φsk
Epk

Keygen 

- Prover generates a secret random 
isogeny  

- Prover publishes the codomain 

φsk

Epk



E0

φsk
Epk

Ecom

φcom

Commitment 

- Prover generates a secret random 
isogeny  

- Prover publishes the codomain 

φcom

Ecom



E0

φsk
Epk

Ecom Echl

φcom

φchl
Challenge 

Verifier generates a public, 
random, smooth degree isogeny 
φchl : Epk → Echl



E0

φsk
Epk

Ecom Echl

φcom

φchl

φrsp

Response 

Prover generates an isogeny 
 for which 

 is cyclic
φresp : Ecom → Echl̂φ rsp ∘ φchl



E0

φsk
Epk

Ecom Echl

φcom

φchl

φrsp

That’s it!



Signatures from Identification Protocols

• We use the Fiat-Shamir transform to obtain an 
asymmetric signature 

• Interactive challenge is replaced by a deterministic 
challenge 

• Commitment recoverability reduces signature size 

• Verification of a signature is ensuring response 
validity



Where’s the endomorphism ring?



The Deuring Correspondence

• Deuring showed that there’s equivalences between the isogeny world and 
quaternion world 

• In supersingular isogeny world, we have curves, points on curves and 
isogenies between curves 

• In quaternion world we have (maximal) orders, quaternions and ideals 

• Importantly, hard isogeny problems can be easy quaternion problems 

• The dictionary we need is the endomorphism ring of a curve



Some Cool Facts

• An isogeny connecting two curves is equivalent to an ideal connecting two 
orders 

• If two ideals are equivalent then the corresponding isogenies have 
isomorphic (co)domains 

• Endomorphisms are equivalent to principle ideals 

• The dual isogeny is equivalent to the conjugate ideal 

• An isogeny of degree d is equivalent to an ideal of norm n

Impress your friends at dinner!



Easy Problems

• Given  compute the corresponding maximal order 

• Given two maximal orders, compute the connecting ideal 

• KLPT: Given an ideal compute an equivalent ideal with smooth norm 

• Given an ideal compute the corresponding isogeny

End(E)



Calculating the Response

• As we know (a basis) of  and we 
know  and , we know a basis 
of  and  

• We then know  and   

• Compute the connecting ideal with left 
order  and right order  (easy) 

• This ideal is equivalent to  

• Only possible because we know secrets!

End(E0)
φcom φsk ∘ φchl

End(Ecom) End(Echl)

𝒪com 𝒪chl

𝒪com 𝒪chl

φrsp

E0

φsk
Epk

Ecom Echl

φcom

φchl

φrsp



SQIsign in dimensions 1, 2, 4, …

• For dimension one the response was computed using the KLPT algorithm 

• Practical concerns restricted suitable characteristics, which meant higher 
security levels were hard to find parameters for 

• The response (2n)-isogeny was very long: with  

• This meant the isogeny was computed in many smaller steps (slow!) 

• Recent work (ApresSQI) tries to speed up verification by allowing larger step 
sizes

deg(φrsp) = p15/4

Dimension One



SQIsign in dimensions 1, 2, 4, 8

• For SQIsignHD the response isogeny no longer needed to be smooth 

• If you work in dimension eight, we get great security proofs, but no one has yet 
implemented dimension eight isogenies 

• If you work in dimension four, you introduce heuristics and weaken the security 
proof 

• Resulting protocol was even more compact than SQIsign 

• Signing was much faster than SQIsign and parameters easy to choose 

• Verification needed (2n,2n,2n,2n)-isogenies which are slow

Dimension Four and Eight



SQIsign in dimensions 1, 2, 4, 8

• In SQIsign2D we obtain the same strong security guarantees of rigorous 
SQIsign8D but with “fast” 2D isogenies 

• Signatures are less compact than SQIsign4D but more compact that SQIsign 

• Signing is much faster than SQIsign and but slower than SQIsign4D 

• Verification is the fastest of all variants (potentially even ApresSQI)

Dimension Two



SQIsign Goldilocks



Translate an ideal into a two-
dimensional isogeny

Evaluate a random isogeny of 
given degree 



Fixed Degree Isogeny

• Input: a curve with known , a basis  and odd integer  

• Output: the image of the basis under the action of an isogeny of degree  and the codomain 
 and the corresponding ideal 

• Sample  with degree  

• Compute the 2D-kernel:  

• Compute the isogeny from this kernel:  

• Evaluate  to obtain the image of  

• Set 

End(E0) E[2e] = ⟨P, Q⟩ u < 2e

u
E′ 

θ ∈ End(E0) u(2e − 2)

⟨([u]P, θ(P)), ([u]Q, θ(Q))⟩

Φ : E0 × E0 → E × E′ 

Φ(P,0) and Φ(Q,0) φ : E0 → E

I = 𝒪θ + 𝒪u



Ideal To Isogeny

• More complicated! 

• Rough Idea: 

• Given an ideal, compute the action of the corresponding isogeny on  

• Requires two calls to fixed degree isogeny built from the basis of  

• Output allows the construction of a third 2D isogeny 

• We evaluate this to get the action desired

E[2e]

I



Computing the response is still 
complex





Is SQIsign2D Secure



SQIsign2D Security Assumptions

• As with preceding work of SQIsign*, key recovery requires solving the 
endomorphism ring problem 

• We’re fairly confident that this is hard 

• Much more fundamentally hard than SIDH 

• There’s always the horror of maths to keep us worried

Key Recovery



SQIsign2D Security Assumptions

• A nice SQIsign trait is the high soundness of the identification protocol 

• This means we only need to run the identification protocol a single time 

• Proof of soundness comes from the degree of the challenge isogeny 

• This is easy to control and set up for optimal parameters

Knowledge Soundness



SQIsign2D Security Assumptions

• Proof that the protocol has the zero-knowledge property 

• Uses a simulator producing transcripts indistinguishable from a honest run of 
the protocol 

• This simulator runs in polynomial time if it has access to an oracle producing 
random isogenies 

• Much of our work is based on the previous work of SQIsignHD 

• Things work nicely in dimension two because of Fixed Degree Isogeny

Zero Knowledge



SQIsign2D Security Assumptions

A fixed degree isogeny oracle (FIDIO) is an oracle 
taking as input a supersingular elliptic curve  defined 
over   and an integer , and outputs a uniformly 
random isogeny  (in efficient 
representation) with domain  and degree .

E
𝔽p2 N

φ : E → E′ 

E N

The Oracle known as FIDIO



SQIsign vs The World



NIST I

NIST III

NIST V

SQIsign2D

Keygen Sign Verify

SQIsign

Keygen Sign Verify

SQIsign2D is a significant improvement
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93

641

2,080

4,600

39,000

165,000

2,800

21,300

91,600



NIST I

NIST III

NIST V

SQIsign2D

Keygen Sign Verify

SQIsign

Keygen Sign Verify

SQIsign2D is a significant improvement
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NIST I

NIST III

NIST V

SQIsign2D

Keygen Sign Verify

SQIsign

Keygen Sign Verify

SQIsign2D is a significant improvement

9
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460

940

28x
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254x

641

2,080

39,000

165,000

21,300

91,600

Keygen is up to 254x faster than SQIsign

392,4001,700



NIST I

NIST III

NIST V

SQIsign2D

Keygen Sign Verify

SQIsign

Keygen Sign Verify

SQIsign2D is a significant improvement
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NIST I

NIST III

NIST V

SQIsign2D

Keygen Sign Verify

SQIsign

Keygen Sign Verify

SQIsign2D is a significant improvement
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NIST I

NIST III

NIST V

SQIsign2D

PK Sig

ML-DSA

PK Sig

ECDSA

PK Sig

SQIsign2D gets close to “classical” sizes
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NIST I

NIST III

NIST V

SQIsign2D

PK Sig

Falcon

PK Sig

ECDSA

PK Sig

SQIsign2D gets close to “classical” sizes
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NIST I

NIST III

NIST V

SQIsign2D

Sign Verify

ML-DSA (Dilithium)

SQIsign2D is still magnitudes slower
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Sign Verify



NIST I

NIST III

NIST V

SQIsign2D

Sign Verify

ML-DSA (Dilithium)

SQIsign2D is still magnitudes slower
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Sign Verify



NIST I

NIST III

NIST V

SQIsign2D

Sign Verify

ML-DSA (Dilithium)

SQIsign2D is still magnitudes slower

76x
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Results measured in 103 cycles

Sign Verify

160,000

460,000

940,000



What should we be working on?



Future Work
What’s Next?

• Cryptographic implementations 

• The current implementation has no side-channel protection 

• Constant time SQIsign is an open-problem! 

• Efficient Implementations 

• Now the isogenies are faster, aspects of quaternions appear slow 

• How much more speed can we get by throwing every trick  at the 
protocol?

𝔽p2



Future Work
What’s Next?

• Dimension two isogenies are still the bottleneck 

• Can we find (4,4)-isogenies to improve performance 

• Can we make size/speed trade-offs to improve performance  

• Generalised Deuring for dimension two: 

• Long term goal, but would halve the characteristic 

• Convince masters students to take this as a PhD problem!



Thank You


