Giacomo Pope | University of Bristol

SQIsign2D **Dimensional Goldilocks**

Joint work with: Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino, **GP**, Damien Robert, Benjamin Wesolowski

- A **post-quantum** digital signature protocol
- As **compact** as SQIsign
- **As safe as SQIsign8D** (safer than SQIsign4D, SQIsign)
- The **fastest verification** of all SQIsign protocols
- Aim is to update the SQIsign **NIST submission** to 2D

SQIsign2D

- Within a few days, **three variants** of SQISign were published
- Today I'll be talking about **SQIsign2D-West**
- **SQIsign2D-East** is very similar to West, but with **heuristics and faster signing**
- **SQIsignPrime** is more similar to **SQIsign4D** with a new challenge
- Neither East or Prime has an implementation

East vs West vs Prime

Very compact signatures

Isogenists: very fast algorithms?!

SQIsign2D

Slow algorithms

SQIsign2D

Can SQIsign2D be fast enough when size-restrictions force its use?

- Understanding SQIsign signatures
- Why is dimension two "just right"
- How does SQIsign2D compare
- What next?

Isogenies and Friends

Isogeny World

- Elliptic curves are curves: maps between curves are rational maps
- Elliptic curves are groups: maps between groups are homomorphisms
- \bullet An isogeny $\varphi: E_1 \to E_2$ is a map between curves which additionally preserves the group structure

ring End(*E*)

$\varphi(P+Q) = \varphi(P) + \varphi(Q), \quad P, Q \in E_1$

 \bullet An isogeny $\theta: E \to E$ is an endomorphism, the set of endomorphisms is a

Supersingular Isogeny World

- Supersingular curves have particularly large endomorphism rings
- \bullet For the curves we consider: E/\mathbb{F}_{p^2} , End (E) has rank four
- Isogenies have finite kernels and we're interested in separable isogenies: $# \text{ker}(\varphi) = \text{deg}(\varphi)$
- For efficiency, we generally can only compute smooth degree isogenies
- \bullet For a given ℓ , we can compute the ℓ -isogeny graph which are ($\ell + 1$) regular and Ramanujan (it's easy to get lost in the graph)

HD Isogeny World

- We can generalise the notion of isogenies to higher dimensional varieties
- A trendy isogeny is one between elliptic products:

• We can think of this as one two-dimensional isogeny or a matrix of four one-dimensional isogenies:

$$
\Phi: E_1 \times E_4 \to E_2 \times E_3
$$

$$
\Phi = \begin{pmatrix} \varphi_{12} & \widehat{\varphi}_{34} \\ -\varphi_{13} & \widehat{\varphi}_{24} \end{pmatrix}
$$

Quaternion World

- \bullet An "extension" of complex numbers, elements look like: $\alpha = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ • For $\alpha \in \mathscr{B}_{p,\infty} = \mathbb{Q}\langle i,j \rangle$ we have $\mathbf{i}^2 = -1$, $\mathbf{j}^2 = -p$, $\mathbf{ij} = \mathbf{k} = -\mathbf{ji}$ \bullet Given a fractional ideal *I*, the left order is $\mathscr{O}_L(I) = \{\alpha \in \mathscr{B}_{p,\infty} \, | \, \alpha I \subset I\}$ \bullet Why quaternions? When End (E) has rank four, $\mathsf{End}(E) \cong \mathscr{O}$ (maximal) • We'll discuss this more Deuring the talk...
-
-

- Given two supersingular elliptic curves, find an isogeny connecting them
- Given a supersingular elliptic curve, compute its endomorphism ring
- In (2021/919) Wesolowski showed these problems are equivalent
- There are other "hard" isogeny problems, some of which are now understood to be easy
- Given an isogeny-based cryptographic primitive, convince people that it's practical

Hard Problems **Or at least not easy yet…**

I know something you don't know and I can prove it to you.

Digital Signatures

I know the...

Endomorphism ring of this supersingular curve

Public set-up

- A prime p

 $\overline{}$

- A supersingular elliptic curve E_0/\mathbb{F}_{p^2} with known endomorphism ring $\overline{\mathcal{O}_0}\cong \mathsf{End}(E_0)$

$$
E_0
$$
: $y^2 = x^3 + x$ (*p* \equiv 3 mod 4)

Keygen

- Prover generates a secret random isogeny $\boldsymbol{\varphi}_{sk}$
- Prover publishes the codomain $E_{\it pk}$

Commitment

- Prover generates a secret random
- Prover publishes the codomain E_{com}

Verifier generates a public,

 $\varphi_{chl}: E_{pk} \rightarrow E_{chl}$

Ecom

 $E_{\rm 0}$

Challenge

 E_{pk}^{\prime}

random, smooth degree isogeny

 φ_{chl}

 φ_{rsp}

Signatures from Identification Protocols

- We use the Fiat-Shamir transform to obtain an asymmetric signature
- Interactive challenge is replaced by a deterministic challenge
- **Commitment recoverability reduces signature size**
- Verification of a signature is ensuring response validity

Where's the endomorphism ring?

The Deuring Correspondence

- Deuring showed that there's **equivalences** between the isogeny world and quaternion world
- In supersingular isogeny world, we have curves, points on curves and isogenies between curves
- In quaternion world we have (maximal) orders, quaternions and ideals
- Importantly, hard isogeny problems can be easy quaternion problems
- The dictionary we need is the endomorphism ring of a curve

• An isogeny connecting two curves is equivalent to an ideal connecting two

Some Cool Facts **Impress your friends at dinner!**

- orders
- If two ideals are equivalent then the corresponding isogenies have isomorphic (co)domains
- Endomorphisms are equivalent to principle ideals
- The dual isogeny is equivalent to the conjugate ideal
- An isogeny of degree d is equivalent to an ideal of norm n

Easy Problems

- \bullet Given $\operatorname{\mathsf{End}}\nolimits(E)$ compute the corresponding maximal order
- Given two maximal orders, compute the connecting ideal
- **KLPT**: Given an ideal compute an equivalent ideal with smooth norm
- Given an ideal compute the corresponding isogeny

Calculating the Response

- \bullet As we know (a basis) of End (E_0) and we know φ_{com} and $\varphi_{sk} \circ \varphi_{chl}$, we know a basis of $\textsf{End}(\overline{E}_{com})$ and $\textsf{End}(E_{chl})$
- We then know \mathcal{O}_{com} and \mathcal{O}_{chl}
- Compute the connecting ideal with left order \mathcal{O}_{com} and right order \mathcal{O}_{chl} (easy)
- \bullet This ideal is equivalent to $\varphi_{\scriptscriptstyle{FSD}}$
- . Only possible because we know secrets!

SQIsign in dimensions 1, 2, 4, … **Dimension One**

- For dimension one the response was computed using the KLPT algorithm
- Practical concerns restricted suitable characteristics, which meant higher security levels were hard to find parameters for
- \bullet The response (2ⁿ)-isogeny was very long: with $\deg(\varphi_{rsp}) = p^{15/4}$
- This meant the isogeny was computed in many smaller steps (slow!)
- Recent work (ApresSQI) tries to speed up verification by allowing larger step sizes

- For SQIsignHD the response isogeny no longer needed to be smooth
- If you work in dimension eight, we get great security proofs, but no one has yet implemented dimension eight isogenies
- If you work in dimension four, you introduce heuristics and weaken the security proof
- Resulting protocol was even more compact than SQIsign
- Signing was much faster than SQIsign and parameters easy to choose
- Verification needed (2ⁿ, 2ⁿ, 2ⁿ, 2ⁿ)-isogenies which are slow

SQIsign in dimensions 1, 2, 4, 8 **Dimension Four and Eight**

- In SQIsign2D we obtain the same strong security guarantees of rigorous SQIsign8D but with "fast" 2D isogenies
- Signatures are less compact than SQIsign4D but more compact that SQIsign
- Signing is much faster than SQIsign and but slower than SQIsign4D
- Verification is the fastest of all variants (potentially even ApresSQI)

SQIsign in dimensions 1, 2, 4, 8 **Dimension Two**

Translate an ideal into a twodimensional isogeny

Evaluate a random isogeny of given degree

Fixed Degree Isogeny

- \bullet Input: a curve with known End (E_0) , a basis $E[2^e] = \langle P,Q \rangle$ and odd integer $u < 2^e$
- E^{\prime} and the corresponding ideal
	- Sample $\theta \in \text{End}(E_0)$ with degree $u(2^e 2)$
	- Compute the 2D-kernel: $\langle ([u]P, \theta(P)), ([u]Q, \theta(Q)) \rangle$
	- \bullet Compute the isogeny from this kernel: $\Phi : E_0 \times E_0 \rightarrow E \times E'$
	- \bullet Evaluate $\Phi(P,0)$ and $\Phi(Q,0)$ to obtain the image of $\varphi:E_0\to E$
	- Set $I = \mathcal{O}\theta + \mathcal{O}u$

 \bullet Output: the image of the basis under the action of an isogeny of degree u and the codomain

Ideal To Isogeny

- More complicated!
- Rough Idea:
	- \bullet Given an ideal, compute the action of the corresponding isogeny on $E[2^e]$
	- Requires two calls to fixed degree isogeny built from the basis of *I*
	- Output allows the construction of a third 2D isogeny
	- We evaluate this to get the action desired

Computing the response is still complex

Is SQIsign2D Secure

SQIsign2D Security Assumptions **Key Recovery**

- As with preceding work of SQIsign*, key recovery requires solving the endomorphism ring problem
- We're fairly confident that this is hard
- Much more fundamentally hard than SIDH
- There's always the horror of maths to keep us worried

SQIsign2D Security Assumptions **Knowledge Soundness**

• A nice SQIsign trait is the high soundness of the identification protocol • This means we only need to run the identification protocol a single time • Proof of soundness comes from the degree of the challenge isogeny • This is easy to control and set up for optimal parameters

- Proof that the protocol has the zero-knowledge property
- Uses a simulator producing transcripts indistinguishable from a honest run of the protocol
- This simulator runs in polynomial time if it has access to an oracle producing random isogenies
- Much of our work is based on the previous work of SQIsignHD
- Things work nicely in dimension two because of Fixed Degree Isogeny

SQIsign2D Security Assumptions **Zero Knowledge**

A fixed degree isogeny oracle (FIDIO) is an oracle ${\sf random}$ isogeny $\phi:E\to E'$ (in efficient representation) with domain E and degree N .

taking as input a supersingular elliptic curve E defined over \mathbb{F}_{p^2} and an integer N , and outputs a uniformly

SQIsign2D Security Assumptions **The Oracle known as FIDIO**

SQIsign vs The World

Results measured in 106 cycles (Intel Ice Lake, 2Ghz)

Results measured in 106 cycles (Intel Ice Lake, 2Ghz)

SQIsign2D is a significant improvement

Keygen is up to 254x faster than SQIsign

Signing is up to 85x faster than SQIsign

Verification is up to 34x faster than SQIsign

Results measured in 103 cycles

Results measured in 103 cycles

Results measured in 103 cycles

What should we be working on?

Future Work **What's Next?**

- Cryptographic implementations • The current implementation has no side-channel protection
	- Constant time SQIsign is an open-problem!
- Efficient Implementations
	- Now the isogenies are faster, aspects of quaternions appear slow
	- \bullet How much more speed can we get by throwing every trick \mathbb{F}_{p^2} at the protocol?

Future Work **What's Next?**

• Dimension two isogenies are still the bottleneck • Can we find (4,4)-isogenies to improve performance • Can we make size/speed trade-offs to improve performance • Generalised Deuring for dimension two: • Long term goal, but would halve the characteristic • Convince masters students to take this as a PhD problem!

