# Superspecial Cryptography 

Computing Isogenies Between Elliptic Products

## I have brilliant friends

## Isogeny Friends

- Rémy Oudompheng
- Many other people!
- Chloe Martindale
- Luciano Maino
- Lorenz Panny
- Damien Robert
- Sabrina Kunzweiler
- Pierrick Dartois


## What's the Plan?

-What is an isogeny between elliptic products?

- How are we asking computers to calculate these maps?
- An open puzzle: a magical square root.


## What is an isogeny between elliptic products?

## Superspecial Abelian Varieties

- A generalisation of supersingular curves
- In dimension two, we have two distinct nodes on our graph
- In characteristic p we have approximately
- Jacobians of hyperelliptic curves ( $\sim p^{3}$ nodes)
- Products of elliptic curves ( $\sim p^{2}$ nodes)



## Jacobians of Hyperelliptic Curves

- A hyperelliptic curve is a generalisation of an elliptic curve
- The Jacobian of the hyperelliptic curve is where we find our group
- The Divisor of a Jacobian is our group element
- The Mumford representation of a divisor is a pair of polynomials
- $C: y^{2}=f(x)$
- $D=(u(x), v(x)) \in \operatorname{Jac}(C)$

$$
\begin{aligned}
& \operatorname{deg}(f)=2 g+2 \\
& \operatorname{deg}(v)<\operatorname{deg}(u) \leq g
\end{aligned}
$$

## Jacobians of Hyperelliptic Curves

- A hyperelliptic curve is a generalisation of an elliptic curve
- The Jacobian of the hyperelliptic curve is where we find our group
- The Divisor of a Jacobian is our group element
- The Mumford representation of a divisor is a pair of polynomials
- $C: y^{2}=x^{6}+73 x^{5}+144 x^{4}+18 x^{3}+151 x^{2}+20 x+80 \bmod 163$
- $(u, v)=\left(x^{2}+14 x+113,0\right)$


## Jacobians of Hyperelliptic Curves

- A hyperelliptic curve is a generalisation of an elliptic curve
- The Jacobian of the hyperelliptic curve is where we find our group
- The Divisor of a Jacobian is our group element
- The Mumford representation of a divisor is a pair of polynomials
- $C: y^{2}=\left(x^{2}+14 x+113\right)\left(x^{2}+84 x+12\right)\left(x^{2}+138 x+152\right) \bmod 163$
- $(u, v)=\left(x^{2}+14 x+113,0\right)$


## How can we compute these isogenies?

## Gluing Elliptic Products

- Given two elliptic curves, find the isogenous hyperelliptic curve

- The gluing isogeny can also be understood as a bijection of roots

$$
\begin{array}{cc}
E_{1}: y^{2}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) & \operatorname{ker}(\gamma)=\left\langle\left(P_{1}, P_{2}\right),\left(Q_{1}, Q_{2}\right)\right\rangle \subset E_{1} \times E_{2} \\
E_{2}: y^{2}=\left(x-b_{1}\right)\left(x-b_{2}\right)\left(x-b_{3}\right) & \left\{a_{1}, a_{2}, a_{3}\right\} \rightarrow\left\{b_{1}, b_{2}, b_{3}\right\} \\
H & : y^{2}=s_{1}\left(x^{2}-\alpha_{1}\right)\left(x^{2}-\alpha_{2}\right)\left(x^{2}-\alpha_{3}\right) \quad \alpha_{i}=\frac{b_{j}-b_{k}}{a_{j}-a_{k}}
\end{array}
$$

## Gluing Montgomery Curves

- Gluing Montgomery curves is particularly beautiful

- Codomain can be computed in only 7 multiplications and 1 inversion

$$
\begin{array}{cc}
E_{1}: y^{2}=x(x-a)\left(x-a^{-1}\right) \\
E_{2}: y^{2}=x(x-b)\left(x-b^{-1}\right) & H: y^{2}=s_{1}\left(x^{2}-\alpha_{1}\right)\left(x^{2}-\alpha_{2}\right)\left(x^{2}-\alpha_{3}\right) \\
& \alpha_{1}=\frac{b-b^{-1}}{a-a^{-1}} \quad \alpha_{2}=\frac{a}{b} \quad \alpha_{3}=\frac{b}{a} \quad s_{1}=\frac{a-1 / a}{a / b-b / a}
\end{array}
$$

## Pushing through points

- Given a pair of points, compute the isogenous divisor

$$
\begin{aligned}
(P, Q) & \in E_{1} \times E_{2} & & H \rightarrow E_{1}:(x, y) \mapsto\left(s_{1} x+s_{2}, s_{1} y\right) \\
\gamma(P, Q) & =\gamma\left(P, \mathcal{O}_{E_{2}}\right)+\gamma\left(\mathcal{O}_{E_{1}}, Q\right) & & H \rightarrow E_{2}:(x, y) \mapsto\left(s_{2} / x^{2}+s_{1}, s_{2} y / x^{3}\right) \\
u_{P} & =x^{2}+\left(s_{2}-P_{x}\right) / s_{1}, & & u_{Q}=x^{2}-s_{2} /\left(Q_{x}-s_{1}\right), \\
v_{P} & =P_{y} / s_{1}, & & v_{Q}=x Q_{y} /\left(Q_{x}-s_{1}\right) .
\end{aligned}
$$

## Mapping between Jacobians

- A $(2,2)$-isogeny is a very special map!
- In 1842, Richelot showed there are compact formula to compute the codomain
- The Richelot correspondence allows us to compute the image of points
- Some recent progress by Sabrina Kunzweiler (2022/990)
- I believe there's interesting work in further optimising these isogenies



## Richelot's Codomain

- Our kernel is determined by two quadratic polynomials

$$
C_{1}: y^{2}=f(x)=G_{1} G_{2} G_{3}, \quad \operatorname{ker}(\varphi)=\left\langle\left(G_{1}, 0\right),\left(G_{2}, 0\right)\right\rangle, \quad G_{i}=g_{i, 2} x^{2}+g_{i, 1} x+g_{i, 0}
$$

- Codomain computation cost: 20M 11

$$
D=\left|\begin{array}{lll}
g_{1,0} & g_{1,1} & g_{1,2} \\
g_{2,0} & g_{2,1} & g_{2,2} \\
g_{3,2} & g_{3,1} & g_{3,2}
\end{array}\right| \quad H_{i}=D^{-1}\left(G_{j}^{\prime} G_{k}-G_{k}^{\prime} G_{j}\right) \quad \varphi: C_{1} \rightarrow C_{2}: y^{2}=H_{1} H_{2} H_{3}
$$

## Splitting to Elliptic Products



- Given a hyperelliptic curve, recover the isogenous product of elliptic curves
- Method: find a coordinate transformation to make this "easy"

$$
\begin{aligned}
& \theta: x \mapsto \frac{\alpha_{1} x+\alpha_{0}}{\beta_{1} x+\beta_{0}} \tilde{C}: y^{2}=c_{3} x^{6}+c_{2} x^{4}+c_{1} x^{2}+c_{0} \\
&\left(x^{2}, y\right) \mapsto(X, Y) \\
&\left(x^{-2}, y x^{-3}\right) \mapsto(U, V) \\
& E_{2}: V^{2}=c_{3} X^{3}+c_{2} X^{2}+c_{1} X+c_{0} \\
& U^{3}+c_{1} U^{2}+c_{2} U+c_{3}
\end{aligned}
$$

## Computing the Isomorphism

$$
\theta: x \mapsto \frac{\alpha_{1} x+\alpha_{0}}{\beta_{1} x+\beta_{0}}
$$

- Once we have our isomorphism, splitting is very natural
- Uncovering the isomorphism is where the work is
- A splitting to an elliptic product is revealed when the determinant vanishes

$$
D=\left|\begin{array}{lll}
g_{1,0} & g_{1,1} & g_{1,2} \\
g_{2,0} & g_{2,1} & g_{2,2} \\
g_{3,2} & g_{3,1} & g_{3,2}
\end{array}\right|=0 \quad G_{3}=\kappa_{1} G_{1}+\kappa_{2} G_{2} \quad \operatorname{ker}(\sigma)=\left\langle\left(G_{1}, 0\right),\left(G_{2}, 0\right)\right\rangle
$$

- The isomorphism can be set by removing linear terms from $G_{1}$ and $G_{2}$

A Magical Formula

$$
\sqrt{\operatorname{Res}\left(G_{1}, G_{2}\right)}=\left(\frac{N_{1}+N_{2}}{N_{1}-N_{2}}\right)\left(b_{1}-b_{2}\right)
$$

## A Magical Formula

$$
\begin{aligned}
& \Phi: E_{1} \times E_{2} \rightarrow E_{0} \times F \\
& \phi_{i}: E_{0} \rightarrow E_{i} \\
& N_{i}=\operatorname{deg}\left(\phi_{i}\right) \quad \text { Isogeny Diamond }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ker}(\sigma) & =\left\langle\left(G_{1}, 0\right),\left(G_{2}, 0\right)\right\rangle \\
G_{i} & =x^{2}+a_{i} x+b_{i}
\end{aligned}
$$

Splitting Isogeny

$$
\sqrt{\operatorname{Res}\left(G_{1}, G_{2}\right)}=\left(\frac{N_{1}+N_{2}}{N_{1}-N_{2}}\right)\left(b_{1}-b_{2}\right)
$$



Thank You

